Three Billion Years of Fatty Acid Metabolism Shape Human Cognitive Performance

نویسنده

  • Paul M. Nealen
چکیده

Animal evolutionary history has progressed, in fits and starts, over several billions of years of changing environmental conditions on this planet. Ancient environments were strikingly different from modern conditions, and, in some cases, have left a permanent stamp on animal (including human) anatomy and physiology. Recently Lassek and Gaulin (2011) assessed the role which dietary fatty acids may play in shaping human cognitive performance, and in doing so, provide an intriguing glimpse into the evolution of animal nervous systems. Using a large sample of American children aged 6–16 from the Third National Health and Nutrition Examination Survey [Center for Disease Control (CDC), 1988– 1994], Lassek and Gaulin explored the statistical relationships between human cognitive performance (assessed via standardized math and reading tests) and dietary components, while controlling for other measures of subjects’ social and environmental backgrounds (including lead exposure, family size and income, ethnicity). They found that dietary fatty acids, particularly n − 3 (“omega-3”) and n − 6 forms, were positively and negatively related, respectively, to cognition scores in both male and female children. The benefits of dietary n − 3 fatty acids were especially important for cognition in female children (Lassek and Gaulin, 2011). Both n − 3 and n − 6 fatty acids are essential nutrients that must be obtained from dietary sources, and our Western diets are known to have relatively low n − 3:n − 6 ratios (Blasbalg et al., 2011). Why their opposite utility? And why of differential importance for males and females? Lassek and Gaulin (2011) suggest explanations which are rooted in our evolutionary past. Our nervous systems contain a predominance of n − 3 fatty acids, which Lassek and Gaulin (2011) hypothesize is due to the fact that animal neurons first evolved in an environment rich in n − 3 fatty acids but limiting in n − 6 fatty acids. Under these conditions, n − 3 fatty acids became, and remain, critical for complete nervous development. Lassek and Gaulin cite corroborative evidence for the ability of n − 6 fatty acids to compete with n − 3 fatty acids for enzymatic access, suggesting that this competition is a direct mechanism for the differential utility of dietary n − 3 and n − 6 forms. Dietary intake of n − 3 fatty acids is shown by Lassek and Gaulin to be especially important for females, which they suggest is due to the fact that female children must partition their dietary intake of these essential nutrients for both their own use as well as toward fat stores for later use as a nutritive source for the provisioning of developing offspring. Here, too, an ancient evolutionary shaping of our animal parental roles continues to represent itself in our utilization of dietary components, with implications for cognitive performance. It is well understood that n − 3 fatty acids are profoundly bio-active in neural as well as other tissues, with influence on cell membrane fluidity (Fernstrom, 1999; Schmitz and Ecker, 2008, and others), oxidative capacity (example in Maillet and Weber, 2007), and gene expression (recently reviewed in Bordoni et al., 2006). Their direct effects on the genesis, viability, and connectivity of neural tissues have also been demonstrated repeatedly in animal studies (as cited by Lassek and Gaulin, 2011), and their dietary importance to the neural development of human infants is also known (Hoffman et al., 2009; Leung et al., 2011; Muhlhausler et al., 2011; Salvig and Lamont, 2011). Lassek and Gaulin (2011) now add to this body of knowledge by demonstrating the importance of dietary n − 3 fatty acids beyond infancy into childhood and adolescence, and also provide evidence and explanation for the differential importance of dietary fatty acids for female children. In doing so, they highlight the need for more stringent consideration of n − 3 dietary requirements during childhood as well as the need for more specific research on the mechanisms by which these essential nutrients influence human cognition. In using their evolutionary perspective, they also provide an important reminder of the need to consider evolutionary constraint in the shaping of our marvelously complex, yet very biologically, nervous systems – in many ways, we (still) are what we eat.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic Effects of Polyunsaturated Fatty Acids in Chickens: A Review

Chicken has been used as a suitable model for lipid metabolism studies, because dietary modifications especially dietary fat type can change chicken body composition. Fats act as a condense source of energy and certain fatty acids such as polyunsaturated fatty acids (PUFAs) are required for both animal and human health. The n-3 PUFAs, especially, eicosapentaenoic acid (EPA) and docosahexaenoic ...

متن کامل

Fatty Acid Composition of Human Follicular Fluid Phospholipids and Fertilization Rate in Assisted Reproductive Techniques

Background: Fatty acids are known to be critically important in multiple biological functions. Phospholipid fatty acids of follicular fluid, an important microenvironment for the development of oocytes, may contribute to the women’s fertility and the efficacy of assisted reproduction techniques. The aim of this study was to investigate the effect of fatty acid composition of follicular fluid ph...

متن کامل

The Effect of Chronic Intake of L-carnitine L-tartrate on Lipid Metabolism during Aerobic Exercise

Background & Aims: Despite 20 years of research, there is no compelling evidence about the effect of carnitine supplementation on improving physical performance in healthy subjects. The aim of this study was to determine the effect of long term consumption of acute L-carnitine L-tartarate (LCLT) on fat metabolism and aerobic capacity. Methods: A total of 28 healthy nonathlete male students rece...

متن کامل

Effect of fish oil replacement by poultry waste oil in feeds on growth parameters, chemical composition and fatty acid profile of rainbow trout (Oncorhynchus mykiss)

The present study aimed to investigate the effects of dietary fish oil replacement by poultry fat on growth performance and fillet quality, Oncorhynchus mykiss. Three diets were used in this experiment, containing different percentages of poultry fat (0% (D1), 50% (D2) and 100% (D3) replacement with fish oil. The fish were reared as three treatments; the fish fed D1 diet; the fish fed D2 diet; ...

متن کامل

Modification of egg yolk fatty acids profile by using different oil sources

The study was conducted to evaluate the effects of different dietary oil sources supplementation on laying hens’ performance and fatty acids profile of egg yolks. Seventy-two 23-week-old laying hens (Tetra-SL) divided into six experimental diets (four replicates and three birds per replication) in a completely randomized design for nine weeks. Experimental diets were included: 1) control (no oi...

متن کامل

Effects of three beta adrenergic receptor agonists on growth performance, blood biochemical parameters, fatty acids composition and carnitine palmitoyltransferase I gene expression of rainbow trout, Oncorhynchus mykiss

Different beta 1 and 2 adrenergic receptors agonists might have various biological and physiological effects on fish species. An experiment was designed to study the effects of feeding ractopamine, terbutaline and metaproterenol; as beta1, beta2 and less selective beta2 adrenergic receptor agonists, respectively; on body weight gain, feed conversion rate, concentration of biochemical parameters...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2011